As annotations of data can be scarce in large-scale practical problems, leveraging unlabelled examples is one of the most important aspects of machine learning. This is the aim of semi-supervised learning. To benefit from the access to unlabelled data, it is natural to diffuse smoothly knowledge of labelled data to unlabelled one. This induces to the use of Laplacian regularization. Yet, current implementations of Laplacian regularization suffer from several drawbacks, notably the well-known curse of dimensionality. In this paper, we provide a statistical analysis to overcome those issues, and unveil a large body of spectral filtering methods that exhibit desirable behaviors. They are implemented through (reproducing) kernel methods, for which we provide realistic computational guidelines in order to make our method usable with large amounts of data.


翻译:由于数据说明在大规模实际问题中可能很少见,利用未贴标签的例子是机器学习的最重要方面之一,这是半监督学习的目的。为了从无标签数据获取中受益,自然地将标签数据知识顺利地传播给无标签数据。这导致使用拉巴拉西亚规范化。然而,目前实施拉巴拉西亚规范化有几个缺点,特别是众所周知的维度诅咒。在本文中,我们提供了统计分析,以克服这些问题,并公布了大量显示可取行为的光谱过滤方法。这些方法是通过(复制)内核方法实施的,我们为此提供了现实的计算指南,以便使我们的方法能够用大量的数据来使用。

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
专知会员服务
51+阅读 · 2020年12月14日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月30日
Arxiv
14+阅读 · 2021年8月5日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员