We develop a new framework for embedding joint probability distributions in tensor product reproducing kernel Hilbert spaces (RKHS). Our framework accommodates a low-dimensional, normalized and positive model of a Radon-Nikodym derivative, which we estimate from sample sizes of up to several million data points, alleviating the inherent limitations of RKHS modeling. Well-defined normalized and positive conditional distributions are natural by-products to our approach. The embedding is fast to compute and accommodates learning problems ranging from prediction to classification. Our theoretical findings are supplemented by favorable numerical results.


翻译:我们开发了一个新的框架,将联合概率分布嵌入到张量积重现核希尔伯特空间(RKHS)中。我们的框架包含了一个低维,归一化和正的Radon-Nikodym导数模型,我们可以从多达数百万个数据点的样本量中估计出来,从而缓解了RKHS建模的固有限制。良好定义的归一化和正条件分布是我们方法的自然副产品。嵌入式计算速度快,适用于从预测到分类的学习问题。我们的理论结果得到了有利的数字结果的支持。

0
下载
关闭预览

相关内容

【干货书】凸随机优化,320页pdf
专知会员服务
86+阅读 · 2022年9月16日
【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
55+阅读 · 2021年3月31日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
45+阅读 · 2019年12月20日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
相关资讯
论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员