This paper explores the point set representation for tubular structure extraction tasks. Compared with the traditional mask representation, the point set representation enjoys its flexibility and representation ability, which would not be restricted by the fixed grid as the mask. Inspired by this, we propose PointScatter, an alternative to the segmentation models for the tubular structure extraction task. PointScatter splits the image into scatter regions and parallelly predicts points for each scatter region. We further propose the greedy-based region-wise bipartite matching algorithm to train the network end-to-end and efficiently. We benchmark the PointScatter on four public tubular datasets, and the extensive experiments on tubular structure segmentation and centerline extraction task demonstrate the effectiveness of our approach. Code is available at https://github.com/zhangzhao2022/pointscatter.
翻译:本文探讨了管状结构提取任务的定点代表制。 与传统的遮盖代表制相比, 定点代表制具有灵活性和代表性能力, 不受固定网格的限制, 不受固定网格的限制, 作为遮罩。 受此启发, 我们提出了管状结构提取任务的分解模型。 点分割将图像分割成散射区, 并同时预测每个散射区的点。 我们进一步提议采用贪婪的以区域为基础的双边匹配算法, 以培训网络端对端并高效。 我们把点标定在四个公共管状数据集上, 以及管状结构分解和中线提取任务的广泛实验, 显示了我们的方法的有效性。 代码可在 https://github. com/zhangzhaoo2022/ pointscatter上查阅。