In the low-data regime, it is difficult to train good supervised models from scratch. Instead practitioners turn to pre-trained models, leveraging transfer learning. Ensembling is an empirically and theoretically appealing way to construct powerful predictive models, but the predominant approach of training multiple deep networks with different random initialisations collides with the need for transfer via pre-trained weights. In this work, we study different ways of creating ensembles from pre-trained models. We show that the nature of pre-training itself is a performant source of diversity, and propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset. The approach is simple: Use nearest-neighbour accuracy to rank pre-trained models, fine-tune the best ones with a small hyperparameter sweep, and greedily construct an ensemble to minimise validation cross-entropy. When evaluated together with strong baselines on 19 different downstream tasks (the Visual Task Adaptation Benchmark), this achieves state-of-the-art performance at a much lower inference budget, even when selecting from over 2,000 pre-trained models. We also assess our ensembles on ImageNet variants and show improved robustness to distribution shift.


翻译:在低数据系统中,很难从零开始训练良好的监管模型。 实践者则转向培训前的模型, 利用转移学习。 整合是一种在经验上和理论上都具有吸引力的方法, 用来构建强大的预测模型, 但以不同随机初始化方式培训多个深层网络的主要方法, 与通过预先培训的重量转移的需要相交。 在这项工作中, 我们研究从预培训模型中创建各种组合的方法。 我们发现, 预培训本身的性质是多样化的极佳来源, 并提议一种实用的算法, 有效地为任何下游数据集确定一组预先培训的模型。 这种方法很简单: 使用最近的邻里精确度来排位预培训模型, 微调最佳的网络, 进行小的超光度扫描, 并贪婪地构建一个共同点, 最大限度地减少认证跨作物。 当我们与19项不同下游任务( 视觉任务适应基准) 的强有力基线一起评估时, 这在低得多的推价预算下取得最先进的业绩, 即使在从2 000多个预培训前模型中选择更稳健的模型时 。 我们还评估了我们的图像配置。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员