In a seminal paper, Szegedy showed how to construct a quantum walk $W(P)$ for any reversible Markov chain $P$ such that its eigenvector with eigenphase $0$ is a quantum sample of the limiting distribution of the random walk and its eigenphase gap is quadratically larger than the spectral gap of $P$. The standard construction of Szegedy's quantum walk requires an ancilla register of Hilbert-space dimension equal to the size of the state space of the Markov chain. We show that it is possible to avoid this doubling of state space for certain Markov chains that employ a symmetric proposal probability and a subsequent accept/reject probability to sample from the Gibbs distribution. For such Markov chains, we give a quantization method which requires an ancilla register of dimension equal to only the number of different energy values, which is often significantly smaller than the size of the state space. To accomplish this, we develop a technique for block encoding Hadamard products of matrices which may be of wider interest.
翻译:Szegedy在一份重要论文中展示了如何为任何可逆的Markov链段建造量子漫步 $W(P) $P 美元,这样,其使用eigenzyle $0 美元作为随机漫步分布限制量的量子样本,其源端差的量子比光谱差($P)大四倍。Szegedy的量子漫步标准构建要求希尔伯特-空间尺寸的ancilla登记册与Markov 链段国家空间大小相等。我们表明,有可能避免将某些使用对称建议概率的Markov 链段国家空间增加一倍,以及随后接受/拒绝Gibbs 分布样本的可能性。对于这种Markov 链段,我们给出了一种四分解方法,要求对尺寸进行一个与不同能量值数等量的电弧登记册,而这通常大大小于国家空间的大小。为了达到这个目的,我们开发了一种对矩阵的块编码Hadmard产品技术,这可能具有更广泛的兴趣。