We consider the extremal problem of interpolation of convex scattered data in $\mathbb{R}^3$ by smooth edge convex curve networks with minimal $L_p$-norm of the second derivative for $1<p\leq\infty$. The problem for $p=2$ was set and solved by Andersson et al. (1995). Vlachkova (2019) extended the results in (Andersson et al., 1995) and solved the problem for $1<p<\infty$. The minimum edge convex $L_p$-norm network for $1<p<\infty$ is obtained from the solution to a system of nonlinear equations with coefficients determined by the data. The solution in the case $1<p<\infty$ is unique for strictly convex data. The corresponding extremal problem for $p=\infty$ remained open. Here we show that the extremal interpolation problem for $p=\infty$ always has a solution. We give a characterization of this solution. We show that a solution to the problem for $p=\infty$ can be found by solving a system of nonlinear equations in the case where it exists.


翻译:我们考虑的是以1美元<p\leq\infty$每平端曲线网平滑端端端锥形曲线网以1美元=p$-norm来对流数据进行内插的极端问题。 美元=2美元的问题由Andersson等人(1995年)。 Vlachkova(2019年)扩大了(Andersson等人,1995年)的结果范围,并解决了1美元=p ⁇ infty$的问题。 1美元=p ⁇ p$-infty$的最小端端锥形锥体内插问题。 1美元=p ⁇ infty$的最小端端端锥形锥体内插问题总是有一个解决方案。 我们从数据确定的非线性方方方方方方程式系统中的解决方案中获取。 我们展示了1美元对等方程式的解决方案, 在那里可以找到, 方方程式的答案是 。

0
下载
关闭预览

相关内容

二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫做函数y=f(x)的二阶导数。
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
47+阅读 · 2022年7月24日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月21日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员