Sentence embeddings encode sentences in fixed dense vectors and have played an important role in various NLP tasks and systems. Methods for building sentence embeddings include unsupervised learning such as Quick-Thoughts and supervised learning such as InferSent. With the success of pretrained NLP models, recent research shows that fine-tuning pretrained BERT on SNLI and Multi-NLI data creates state-of-the-art sentence embeddings, outperforming previous sentence embeddings methods on various evaluation benchmarks. In this paper, we propose a new method to build sentence embeddings by doing supervised contrastive learning. Specifically our method fine-tunes pretrained BERT on SNLI data, incorporating both supervised crossentropy loss and supervised contrastive loss. Compared with baseline where fine-tuning is only done with supervised cross-entropy loss similar to current state-of-the-art method SBERT, our supervised contrastive method improves 2.8% in average on Semantic Textual Similarity (STS) benchmarks and 1.05% in average on various sentence transfer tasks.


翻译:在固定密度矢量和多NLI数据中,通过预先培训的NLP模型的成功,最近的研究表明,在SNLI和多NLI数据中,对经过预先培训的BERT进行微调,形成最先进的嵌入,优于以往的嵌入方法,在各种评价基准中。在本文中,我们建议了一种新的方法,通过监督对比学习来建立嵌入句子。具体地说,我们的方法是预先培训的BERT在SNLI数据上,既包括监督的跨热带损失,也包括监督的对比损失。与基准相比,我们监督的对比方法只对监督的跨热带损失进行了微调,类似于目前的最新方法SBERT,我们监督的跨热带损失方法提高了Smantic Textality基准的平均2.8%和各种判决转移任务的平均1.05%。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
5+阅读 · 2020年10月2日
VIP会员
相关资讯
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员