Laser interstitial thermal therapy (LITT) is a novel minimally invasive treatment that is used to ablate intracranial structures to treat mesial temporal lobe epilepsy (MTLE). Region of interest (ROI) segmentation before and after LITT would enable automated lesion quantification to objectively assess treatment efficacy. Deep learning techniques, such as convolutional neural networks (CNNs) are state-of-the-art solutions for ROI segmentation, but require large amounts of annotated data during the training. However, collecting large datasets from emerging treatments such as LITT is impractical. In this paper, we propose a progressive brain lesion synthesis framework (PAVAE) to expand both the quantity and diversity of the training dataset. Concretely, our framework consists of two sequential networks: a mask synthesis network and a mask-guided lesion synthesis network. To better employ extrinsic information to provide additional supervision during network training, we design a condition embedding block (CEB) and a mask embedding block (MEB) to encode inherent conditions of masks to the feature space. Finally, a segmentation network is trained using raw and synthetic lesion images to evaluate the effectiveness of the proposed framework. Experimental results show that our method can achieve realistic synthetic results and boost the performance of down-stream segmentation tasks above traditional data augmentation techniques.
翻译:激光间热疗法(LITT)是一种新颖的最小侵入性治疗,用于对内结构进行大化处理,以治疗中度时间叶癫痫(MTLE) 。 LITT 之前和之后感兴趣的区域(ROI) 分割将使自动损伤量化能够客观地评估治疗效果。 深层学习技术,如进化神经网络(CNNs)是最新工艺的ROI分割解决方案,但在培训期间需要大量附加说明的数据。 然而,从新的处理方法(如LITT)中收集大型数据集是行不通的。 在本文中,我们提出一个渐进式脑损伤合成框架(PAVAE),以扩大培训数据集的数量和多样性。具体地说,我们的框架由两个顺序网络组成:一个掩码合成网络和一个蒙面导导导形损害合成网络。为了更好地使用外部信息在网络培训期间提供额外监督,我们设计了一个条件嵌入块(CEBEB)和一个遮罩嵌块(MEB),以将内嵌入内嵌成对地层空间的内隐含面的内在条件。最后,我们提出了一个渐进式的大脑损综合分析网络,用来评估了我们的拟议合成分析框架,以实现Slividustral-Slividustral 的合成分析结果。