We introduce efficient algorithms for approximate sampling from symmetric Gibbs distributions on the sparse random (hyper)graph. The examples we consider include (but are not restricted to) important distributions on spin systems and spin-glasses such as the q state antiferromagnetic Potts model for $q\geq 2$, including the colourings, the uniform distributions over the Not-All-Equal solutions of random k-CNF formulas. Finally, we present an algorithm for sampling from the spin-glass distribution called the k-spin model. To our knowledge this is the first, rigorously analysed, efficient algorithm for spin-glasses which operates in a non trivial range of the parameters. Our approach builds on the one that was introduced in [Efthymiou: SODA 2012]. For a symmetric Gibbs distribution $\mu$ on a random (hyper)graph whose parameters are within an certain range, our algorithm has the following properties: with probability $1-o(1)$ over the input instances, it generates a configuration which is distributed within total variation distance $n^{-\Omega(1)}$ from $\mu$. The time complexity is $O((n\log n)^2)$. The algorithm requires a range of the parameters which, for the graph case, coincide with the tree-uniqueness region, parametrised w.r.t. the expected degree d. For the hypergraph case, where uniqueness is less restrictive, we go beyond uniqueness. Our approach utilises in a novel way the notion of contiguity between Gibbs distributions and the so-called teacher-student model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员