Real-life agents seldom have unlimited reasoning power. In this paper, we propose and study a new formal notion of computationally bounded strategic ability in multi-agent systems. The notion characterizes the ability of a set of agents to synthesize an executable strategy in the form of a Turing machine within a given complexity class, that ensures the satisfaction of a temporal objective in a parameterized game arena. We show that the new concept induces a proper hierarchy of strategic abilities -- in particular, polynomial-time abilities are strictly weaker than the exponential-time ones. We also propose an ``adaptive'' variant of computational ability which allows for different strategies for each parameter value, and show that the two notions do not coincide. Finally, we define and study the model-checking problem for computational strategies. We show that the problem is undecidable even for severely restricted inputs, and present our first steps towards decidable fragments.
翻译:暂无翻译