In this work, we introduce 6D Convolutional Neural Network (6DCNN) designed to tackle the problem of detecting relative positions and orientations of local patterns when processing three-dimensional volumetric data. 6DCNN also includes SE(3)-equivariant message-passing and nonlinear activation operations constructed in the Fourier space. Working in the Fourier space allows significantly reducing the computational complexity of our operations. We demonstrate the properties of the 6D convolution and its efficiency in the recognition of spatial patterns. We also assess the 6DCNN model on several datasets from the recent CASP protein structure prediction challenges. Here, 6DCNN improves over the baseline architecture and also outperforms the state of the art.
翻译:在这项工作中,我们引入了6D革命神经网络(6DCNN),旨在解决在处理三维体积数据时发现当地模式相对位置和方向的问题。 6DCNNN还包含在Fourier空间建造的SE(3)等式电文传递和非线性激活操作,在Fourier空间工作可以大大降低我们操作的计算复杂性。我们展示了6D革命的特性及其在承认空间模式方面的效率。我们还评估了最近CASP蛋白质结构预测挑战中若干数据集的6DCNN模型。这里,6DCNN改进了基线结构,也超越了艺术状态。