Translation distance based knowledge graph embedding (KGE) methods, such as TransE and RotatE, model the relation in knowledge graphs as translation or rotation in the vector space. Both translation and rotation are injective; that is, the translation or rotation of different vectors results in different results. In knowledge graphs, different entities may have a relation with the same entity; for example, many actors starred in one movie. Such a non-injective relation pattern cannot be well modeled by the translation or rotation operations in existing translation distance based KGE methods. To tackle the challenge, we propose a translation distance-based KGE method called SpaceE to model relations as linear transformations. The proposed SpaceE embeds both entities and relations in knowledge graphs as matrices and SpaceE naturally models non-injective relations with singular linear transformations. We theoretically demonstrate that SpaceE is a fully expressive model with the ability to infer multiple desired relation patterns, including symmetry, skew-symmetry, inversion, Abelian composition, and non-Abelian composition. Experimental results on link prediction datasets illustrate that SpaceE substantially outperforms many previous translation distance based knowledge graph embedding methods, especially on datasets with many non-injective relations. The code is available based on the PaddlePaddle deep learning platform https://www.paddlepaddle.org.cn.
翻译:以远程翻译为基础的知识嵌入( KGE) 方法, 如 TransE 和 RotateE 等基于远程知识嵌入( KGE) 方法, 以矢量空间的翻译或旋转来模拟知识图形中的关系。 翻译和旋转都是给定的, 也就是说, 不同的矢量的翻译或旋转产生不同的结果。 在知识图形中, 不同的实体可能与同一实体有关系; 例如, 许多以一部电影中为明星的行为体。 这种非预测性关系模式无法用基于现有翻译的基于远程 KGE 方法中的翻译或轮换操作来很好地建模。 为了应对这一挑战, 我们提议了一种基于远程翻译的 KGE 方法, 名为 SpaceE 的翻译方法, 称为SpaceE 将两个实体和关系嵌入于知识图表中, 如矩阵和 SpaceE 自然模型与单线性变关系。 我们理论上证明, SpaceE是一个完全表达的模型, 能够推算出多种期望的关系模式, 包括对称、 skew- 对称、 inversty、 Aliel 构成、 和非Abelpadpad 构成。 实验性数据预报结果的实验结果, 演示中以许多基于Sloaddaldaldaldegradududing dislatedald smaislated