项目名称: 一维非线性晶格体系中的量子孤子

项目编号: No.11264012

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李德俊

作者单位: 吉首大学

项目金额: 50万元

中文摘要: 自然界中存在大量的一维离散晶格体系;随着纳米制备技术的发展将会出现更多的这种体系。一维体系中一些独特的性质使其具有潜在的和重要的应用前景。由于对一维体系的直接实验观测目前非常困难,而很多一维体系中的问题在解析和数值两方面都具有很好的可解性,理论研究和数值模拟在现在和将来都是一种重要的手段。目前,这方面的研究主要还是局限在经典领域。本项目中,我们将在量子力学的框架内对FPU和KG模型中的空间局域态行为展开系统研究。数值研究方面,我们采用Jackiw-Kerman型波包,利用Dirac变分原理推导了一种用于动力学问题研究的方法。解析研究方面,我们初步工作将基于黄国翔教授给出的一种思路,利用我们的准连续近似寻找体系中新的量子孤子解。本项目的研究将期望阐明一维非线性离散晶格体系中的一些物理现象的本质,对丰富凝聚态物理理论有所贡献。

中文关键词: 量子效应;孤子;离散呼吸子;非线性晶格;

英文摘要: There exist a large number of systems of one-dimensional discrete lattices. With the development of nano fabrication technology,such more systems will appear. Some peculiar properties in one-dimensional systems make them possess important and potential applications. Because of difficultity in direct measurement of one-dimensional systems and good solvability of these models,theoretical study and numerical simulation prove to be important means at present and in the future, however,most study in this field is vastly limited in classical realm. In this project,we will systematically study behaviors of spatially localized states in FPU and KG models in the framework of quamtum mechanics. Numerically,with the help of the Dirac's time-dependent variational principle and Jackiw-Kerman wave packet, we derive a research method that can be used to study dynamical problems. While in analyzing respect, based on the method of Pro. Guoxiang Huang,our preliminary work is to look for the new quantum soliton by using our quasi-continuum approximation. We hope that our work will make some contribution to clarify the physical essence of the 1D discrete lattice phenomenon and enrich the condensed matter theories.

英文关键词: Quantum effects;Solitons;Discrete breathers;Nonlinear lattices;

成为VIP会员查看完整内容
0

相关内容

【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
65+阅读 · 2021年7月4日
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
【干货书】Python科学编程,451页pdf
专知会员服务
127+阅读 · 2021年6月27日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
26+阅读 · 2018年9月21日
小贴士
相关VIP内容
【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
65+阅读 · 2021年7月4日
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
【干货书】Python科学编程,451页pdf
专知会员服务
127+阅读 · 2021年6月27日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
26+阅读 · 2018年9月21日
微信扫码咨询专知VIP会员