This paper proposes a novel approach for computing the meta distribution of the signal-to-interference-plus-noise ratio (SINR) for the downlink transmission in a wireless network with Rayleigh fading. The novel approach relies on an approximation mix of exact and mean-field analysis of interference (dominant interferer-based approximation) to reduce the complexity of analysis and enhance tractability. In particular, the proposed approximation omits the need to compute the first or the second moment of the SINR that is used in the beta approximation typically adopted in the literature but requires of computing the joint distance distributions. We first derive the proposed approximation based on a Poisson point process (PPP) network with a standard path-loss and Rayleigh fading and then illustrate its accuracy and operability in another four widely used point processes: Poisson bipolar network, Mat\'{e}rn cluster process (MCP), $K$-tier PPP and Poisson line Cox process (PLCP). Specifically, we obtain the SINR meta distribution for PLCP networks for the first time. Even though the proposed approximation looks simple but it shows good matching in comparison to the popular beta approximation as well as the Monte-Carlo simulations, which opens the door to adopting this approximation in more advanced network architectures.


翻译:本文提出一种新的方法,用于计算在无线网络中与Rayleigh 消退的信号到干涉+噪音比率(SINR)下链传输的元分布。 新的方法依赖于对干扰进行精确和平均的组合分析(主要干扰者基近球),以减少分析的复杂程度,增强可移动性。 特别是, 拟议的近球省略了计算SNIR第一或第二刻的必要性, 后者通常在文献中采用, 但需要计算联合距离分布。 我们首先根据 Poisson 点(PPP) 进程(PPP) 得出拟议的近似值, 其基础是标准路径损失和Rayleoley 淡化, 并随后说明其准确性和可操作性, 在另外四个广泛使用的点进程中: Poisson 双极网络、 Mat\\ { { e}rn 集群进程( MCP )、 $K$-tile PPPPP和 Poisson 线 Cox 进程(PLCP 进程) 。 具体而言, 我们第一次为PLCP 网络获得SIN 元分布分布。 尽管拟议的近似看起来简单, 但它在将开启中开启中打开中打开,,, 将开启了通路路机, 将开启, 将打开 以 以 将 的版本打开了通路机 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员