Temporal action segmentation (TAS) is a critical step toward long-term video understanding. Recent studies follow a pattern that builds models based on features instead of raw video picture information. However, we claim those models are trained complicatedly and limit application scenarios. It is hard for them to segment human actions of video in real time because they must work after the full video features are extracted. As the real-time action segmentation task is different from TAS task, we define it as streaming video real-time temporal action segmentation (SVTAS) task. In this paper, we propose a real-time end-to-end multi-modality model for SVTAS task. More specifically, under the circumstances that we cannot get any future information, we segment the current human action of streaming video chunk in real time. Furthermore, the model we propose combines the last steaming video chunk feature extracted by language model with the current image feature extracted by image model to improve the quantity of real-time temporal action segmentation. To the best of our knowledge, it is the first multi-modality real-time temporal action segmentation model. Under the same evaluation criteria as full video temporal action segmentation, our model segments human action in real time with less than 40% of state-of-the-art model computation and achieves 90% of the accuracy of the full video state-of-the-art model.


翻译:时间行动分解( TAS) 是长期视频理解的关键步骤 。 最近的研究遵循一种模式, 建立基于特征而非原始视频图片信息的模型 。 然而, 我们声称这些模型是经过复杂训练的, 并限制应用情景 。 它们很难将视频中的人类行动分解为实时, 因为他们必须在全部视频特征被提取后才能工作 。 由于实时行动分解任务不同于 TAS 任务, 我们把它定义为流视频实时时间行动分解( SVTAS) 任务 。 在本文中, 我们为 SVTAS 任务提出了一个实时端到端多式模型模型。 更具体地说, 在无法获取任何未来信息的情况下, 我们很难将当前人类的视频流块动作分解为实时。 此外, 我们提议的模型将语言模型所抽取的最后一个蒸汽视频块与通过图像模型所提取的当前图像特征结合起来, 以提高实时时间行动分解的数量 。 根据我们的知识, 这是第一个多模式的实时至端多模式多模式多模式多模式的多模式行动模式模式模式。 更具体地说, 我们的40级的视频分解的模型模型模型模型模型模型模型在实时的模型中实现了90段的模型中,, 我们的全部段段段的模型的模型的计算,,, 的模型的模型的全段计算是整个段段段段段段段次的计算, 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
17+阅读 · 2020年11月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员