For saving cost, many deep neural networks (DNNs) are trained on third-party datasets downloaded from internet, which enables attacker to implant backdoor into DNNs. In 2D domain, inherent structures of different image formats are similar. Hence, backdoor attack designed for one image format will suite for others. However, when it comes to 3D world, there is a huge disparity among different 3D data structures. As a result, backdoor pattern designed for one certain 3D data structure will be disable for other data structures of the same 3D scene. Therefore, this paper designs a uniform backdoor pattern: NRBdoor (Noisy Rotation Backdoor) which is able to adapt for heterogeneous 3D data structures. Specifically, we start from the unit rotation and then search for the optimal pattern by noise generation and selection process. The proposed NRBdoor is natural and imperceptible, since rotation is a common operation which usually contains noise due to both the miss match between a pair of points and the sensor calibration error for real-world 3D scene. Extensive experiments on 3D mesh and point cloud show that the proposed NRBdoor achieves state-of-the-art performance, with negligible shape variation.
翻译:为了节省成本,许多深心神经网络(DNNS)都接受了关于从互联网下载的第三方数据集的培训,这些数据集使攻击者能够把后门植入DNS。在 2D 域,不同图像格式的内在结构相似。因此,为一个图像格式设计的后门攻击将为其他图像格式设计。然而,在3D世界,不同的3D数据结构之间存在巨大的差异。因此,为某3D数据结构设计的后门模式将无法用于同一3D场景的其他数据结构。因此,本文设计了一个统一的后门模式:NRBdoor(Noisy Rodation Backdoor),它能够适应异式的 3D 数据结构。具体地说,我们从单元旋转开始,然后通过噪音生成和选择程序搜索最佳模式。拟议的NRBD门是自然和不易感知的,因为轮换是一种常见的操作,通常含有噪音,因为一对一对点和真实世界3D场的传感器校准错误。在3D 片段和点上进行广泛的实验,在3D 云层上显示拟议的NRBD 变形的状态显示可移动的状态。