Human pose estimation is a complicated structured data sequence modeling task. Most existing methods only consider the pair-wise interaction of human body joints in model learning. Unfortunately, this causes 3D pose estimation to fail in difficult cases such as $\textit{joints overlapping}$, and pose $\textit{fast-changing}$, as pair-wise relations cannot exploit fine-grained human body priors in pose estimation. To this end, we revamped the 3D pose estimation framework with a $\textit{High-order}$ $\textit{Directed}$ $\textit{Transformer}$ (HDFormer), which coherently exploits the high-order bones and joints relevances to boost the performance of pose estimation. Specifically, HDFormer adopts both self-attention and high-order attention schemes to build up a multi-order attention module to perform the information flow interaction including the first-order $"\textit{joint$\leftrightarrow$joint}"$, second-order $"\textit{bone$\leftrightarrow$joint}"$ as well as high-order $"\textit{hyperbone$\leftrightarrow$joint}"$ relationships (hyperbone is defined as a joint set), compensating the hard cases prediction in fast-changing and heavy occlusion scenarios. Moreover, modernized CNN techniques are applied to upgrade the transformer-based architecture to speed up the HDFormer, achieving a favorable trade-off between effectiveness and efficiency. We compare our model with other SOTA models on the datasets Human3.6M and MPI-INF-3DHP. The results demonstrate that the proposed HDFormer achieves superior performance with only $\textbf{1/10}$ parameters and much lower computational cost compared to the current SOTAs. Moreover, HDFormer can be applied to various types of real-world applications, enabling real-time and accurate 3D pose estimation. The source code is in https://github.com/hyer/HDFormer.


翻译:人类表面估计是一个复杂的结构化数据序列模型任务。 大多数现有方法仅考虑模型学习中的人体联合对称互动 。 不幸的是, 这导致 3D 的估算在诸如 $\ textit{ 联合重叠} $ 等困难情况下失败, 并构成 $\ textit{ fast- change} $, 因为对称关系无法利用细细化的人体之前来进行估算。 为此, 我们修改3D 的估算框架, 以 $\ textit{ hig- order} $\ textit{ dremit} $$\ text_ textitle{ Transfent}$ (HDFeral) (HDF), 连续地利用高端骨架骨架骨架骨架骨架骨架骨架骨架骨架骨架 3DFlickr) 和SOral- bral- deal- demodeal- deal- deal deal deal deal deal deal deforal defor defors.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员