In Bayesian inference, the most probable explanation (MPE) problem requests a variable instantiation with the highest probability given some evidence. Since a Bayesian network can be encoded as a literal-weighted CNF formula $\varphi$, we study Boolean MPE, a more general problem that requests a model $\tau$ of $\varphi$ with the highest weight, where the weight of $\tau$ is the product of weights of literals satisfied by $\tau$. It is known that Boolean MPE can be solved via reduction to (weighted partial) MaxSAT. Recent work proposed DPMC, a dynamic-programming model counter that leverages graph-decomposition techniques to construct project-join trees. A project-join tree is an execution plan that specifies how to conjoin clauses and project out variables. We build on DPMC and introduce DPO, a dynamic-programming optimizer that exactly solves Boolean MPE. By using algebraic decision diagrams (ADDs) to represent pseudo-Boolean (PB) functions, DPO is able to handle disjunctive clauses as well as XOR clauses. (Cardinality constraints and PB constraints may also be compactly represented by ADDs, so one can further extend DPO's support for hybrid inputs.) To test the competitiveness of DPO, we generate random XOR-CNF formulas. On these hybrid benchmarks, DPO significantly outperforms MaxHS, UWrMaxSat, and GaussMaxHS, which are state-of-the-art exact solvers for MaxSAT.


翻译:在Bayesian 推论中,最有可能的解释问题(MPE)要求一种具有最高概率的可变解算法。由于Bayesian 网络可以被编码成一个字形加权的 CNF 公式 $\ varphie$,我们研究Boolean MPE,这是一个更普遍的问题,它要求一个模型$tau$和美元,其重量最高,其中$tau$的重量是满足于$&tau$的公升重量的产物。众所周知,Boolean MPE可以通过减到(加权部分) MaxSAT解决。最近的工作提议了DPMC,这是一个动态-prography CNF 公式模型,用来利用图形-decomplation技术来构建项目join树。项目join树是一个执行计划,它要求一个模型$tau $tau 美元, 其重量最高, 其重量是 DPMC, 并引入DPO, 其动态- programe 优化支持Bole MPE 。通过高分辨率决定图(ADDDO-O) 来代表一个硬质的硬质限制。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员