Delayed diagnosis of syndesmosis instability can lead to significant morbidity and accelerated arthritic change in the ankle joint. Weight-bearing computed tomography (WBCT) has shown promising potential for early and reliable detection of isolated syndesmotic instability using 3D volumetric measurements. While these measurements have been reported to be highly accurate, they are also experience-dependent, time-consuming, and need a particular 3D measurement software tool that leads the clinicians to still show more interest in the conventional diagnostic methods for syndesmotic instability. The purpose of this study was to increase accuracy, accelerate analysis time, and reduce inter-observer bias by automating 3D volume assessment of syndesmosis anatomy using WBCT scans. We conducted a retrospective study using previously collected WBCT scans of patients with unilateral syndesmotic instability. 144 bilateral ankle WBCT scans were evaluated (48 unstable, 96 control). We developed three deep learning (DL) models for analyzing WBCT scans to recognize syndesmosis instability. These three models included two state-of-the-art models (Model 1 - 3D convolutional neural network [CNN], and Model 2 - CNN with long short-term memory [LSTM]), and a new model (Model 3 - differential CNN LSTM) that we introduced in this study. Model 1 failed to analyze the WBCT scans (F1-score = 0). Model 2 only misclassified two cases (F1-score = 0.80). Model 3 outperformed Model 2 and achieved a nearly perfect performance, misclassifying only one case (F1-score = 0.91) in the control group as unstable while being faster than Model 2.


翻译:对合成疾病不稳定的延迟诊断可能导致显著的发病率和加速脚踝关节关节变化的加速性变化。 带有重力的计算断层摄影(WBCT)显示,利用3D体积测量早期和可靠地检测孤立合成疾病不稳定性有潜力。 虽然这些测量报告高度准确,但它们也依赖经验,耗时,需要3D测量软件工具,使临床医生仍然对常规诊断方法表现出更大的兴趣,以发现合成疾病不稳定性。本研究的目的是提高精确度,加快分析时间,并通过使用3D体积扫描对2D体积对单体系合成疾病解剖进行自动评估,从而减少观察者之间的偏差。我们利用以前收集的对单体积不稳定病人的WBCT扫描进行了回顾性研究。 144个双骨架快速扫描(48个不稳定,96个控制)。我们开发了三个深度学习(DLL)模型,用于分析WBCT扫描以识别合成疾病不稳定性。这三种模型包括两种状态-3DRIS的体积体积量评估,一个模型为1-模型,一个模型=3MISLM 3-N-CMLS-CMLS-M 30的模型,一个模型为1,一个模型为模型,一个模型为模型为1,一个模型为模型为模型为模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月30日
Arxiv
0+阅读 · 2022年8月28日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员