In this paper, we propose high order semi-implicit schemes for the all Mach full Euler equations of gas dynamics. Material waves are treated explicitly, while acoustic waves are treated implicitly, thus avoiding severe CFL restrictions for low Mach flows. High order accuracy in time is obtained by semi-implicit temporal integrator based on the IMEX Runge-Kutta (IMEX-RK) framework. High order in space is achieved by finite difference WENO schemes with characteristic-wise reconstructions adapted to the semi-implicit IMEX-RK time discretization. The schemes are proven to be asymptotic preserving and asymptotically accurate as the Mach number vanishes. Besides, they can well capture discontinuous solutions in the compressible regime, especially for two dimensional Riemann problems. Numerical tests in one and two space dimensions will illustrate the effectiveness of the proposed schemes.
翻译:在本文中,我们提出了所有马赫全面气动电动等式的高顺序半隐含计划; 材料波得到明确处理,而声波得到暗中处理,从而避免了对低马赫流动的严重的CFL限制; 根据IMEX Runge-Kutta(IMEX-RK-RK)框架的半隐含时间集成者获得高顺序的准确性; 空间的高度秩序是通过有限的差异WENO计划实现的;WENO计划具有与半隐含的IMEX-RK时间分解相适应的特性的重建。 事实证明,这些计划在马赫数字消失时,是无症状的保存和无症状的准确性。 此外,它们还可以在可压缩的制度中捕捉不连续的解决方案,特别是针对两个维立曼问题。 一个和两个空间层面的数值测试将说明拟议计划的有效性。