A low-order finite element method is constructed and analysed for an incompressible non-Newtonian flow problem with power-law rheology. The method is based on a continuous piecewise linear approximation of the velocity field and piecewise constant approximation of the pressure. Stabilisation, in the form of pressure jumps, is added to the formulation to compensate for the failure of the inf-sup condition, and using an appropriate lifting of the pressure jumps a divergence-free approximation to the velocity field is built and included in the discretisation of the convection term. This construction allows us to prove the convergence of the resulting finite element method for the entire range $r>\frac{2 d}{d+2}$ of the power-law index $r$ for which weak solutions to the model are known to exist in $d$ space dimensions, $d \in \{2,3\}$.


翻译:设计和分析一种低级有限元素法,用于处理电法风湿的无法压缩的非牛顿流问题。该方法基于速度场的连续片断线近近近和压力的片断常近近。在配方中添加了稳定化,即以压力跳跃的形式,以补偿降压状况的失灵,并使用适当的降压,将无差异的近近近点建于速度场,并纳入对流术语的分解中。这一构造使我们能够证明由此得出的整个范围(${frac{2 d ⁇ d+2})的有限元素法方法的趋同。电法指数的美元稳定化,因为已知该模型的薄弱解决方案存在于美元空间尺寸,$d $2,3 ⁇ 美元。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
【硬核书】群论,Group Theory,135页pdf
专知会员服务
126+阅读 · 2020年6月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
【硬核书】群论,Group Theory,135页pdf
专知会员服务
126+阅读 · 2020年6月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员