A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in time in order to preserve the energy-decay structure of NS equations. First-order convergence of the proposed method is established independent of the viscosity coefficient $\mu$, under weaker regularity conditions than other existing numerical methods, including the semi-implicit Euler method and classical exponential integrators. Numerical results show that the proposed method is more accurate than the semi-implicit Euler method in the viscous case $\mu=O(1)$, and more accurate than the classical exponential integrator in the inviscid case $\mu\rightarrow 0$.
翻译:为Navier-Stokes方程式提议了新型的低常规化集成器,同时在空间中采用稳定的有限元素法。与其他非线性分散式方程式的低常规化集成器不同,非线性分散式方程式在时间上完全明确,拟议方法在时间上是半隐含的,以保全NS方程式的能量衰减结构。拟议方法的第一阶趋同器与相对性系数$\mu$无关,在比其他现有数字方法,包括半隐性电极法和经典指数化集成器等较弱的常规性条件下,在比其他数字法更弱的情况下,包括半隐性电极法和典型指数化集成器。数字结果显示,拟议方法比粘结案 $\mu=O(1)$ 的半隐含性电离器法更准确,比在反摄案 $\mu\rightrow 0美元中古典指数化器更精确。