Object counting is a seemingly simple task with diverse real-world applications. Most counting methods focus on counting instances of specific, known classes. While there are class-agnostic counting methods that can generalise to unseen classes, these methods require reference images to define the type of object to be counted, as well as instance annotations during training. We identify that counting is, at its core, a repetition-recognition task and show that a general feature space, with global context, is sufficient to enumerate instances in an image without a prior on the object type present. Specifically, we demonstrate that self-supervised vision transformer features combined with a lightweight count regression head achieve competitive results when compared to other class-agnostic counting tasks without the need for point-level supervision or reference images. Our method thus facilitates counting on a constantly changing set composition. To the best of our knowledge, we are both the first reference-less class-agnostic counting method as well as the first weakly-supervised class-agnostic counting method.


翻译:对象计数是一个看似简单的任务, 具有不同的真实世界应用程序。 大多数计数方法都侧重于计数特定已知类的事例。 虽然有类级不可知的计数方法可以概括到不可见类中, 但是这些方法需要参考图像来定义要计算的对象类型, 以及训练过程中的实例说明 。 我们确认计数是其核心的重复识别任务, 并显示一个具有全球背景的一般特征空间足以在图像中列举实例, 而无需事先列出现有对象类型 。 具体地说, 我们证明自我监督的视像变异器特性加上轻量计数回归头, 与其他类类不可知计数任务相比, 在不需要点级监督或参考图像的情况下, 取得了竞争性的结果 。 因此, 我们的方法有利于计算一个不断改变的设定构成 。 就我们所知, 我们既是第一种无参考的类不可知的类计数方法, 也是第一种微弱的类不可知的计算方法 。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员