In this paper, we propose a parallel-in-time algorithm for approximately solving parabolic equations. In particular, we apply the $k$-step backward differentiation formula, and then develop an iterative solver by using the waveform relaxation technique. Each resulting iteration represents a periodic-like system, which could be further solved in parallel by using the diagonalization technique. The convergence of the waveform relaxation iteration is theoretically examined by using the generating function method. The approach we established in this paper extends the existing argument of single-step methods in Gander and Wu [Numer. Math., 143 (2019), pp. 489--527] to general BDF methods up to order six. The argument could be further applied to the time-fractional subdiffusion equation, whose discretization shares common properties of the standard BDF methods, because of the nonlocality of the fractional differential operator. Illustrative numerical results are presented to complement the theoretical analysis.


翻译:在本文中,我们建议为大约解决抛物线方程式采用一个平行时间算法。 特别是, 我们应用了美元分步后退公式, 然后通过使用波形放松技术开发了一个迭代求解器。 每个结果的迭代代表一个周期性系统, 这个系统可以通过对角化技术进一步平行解决。 波形放松迭代在理论上通过生成函数法来审查。 我们在本文件中确定的方法将甘德尔和吴[Numer. Math.,143 (2019年), pp.489-527]的现有单步方法的论点延伸至一般的BDF方法, 直至第六个顺序。 这个论点可以进一步适用于时间- 折射分解分解方程式, 其分解性与标准 BDF 方法具有共同特性, 因为分解操作器不易定位。 提供了隐喻的数字结果来补充理论分析。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
专知会员服务
84+阅读 · 2020年12月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月26日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员