In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulations. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
翻译:在本文中,我们对大量混合不连续的Galerkin方法的超趋同特性进行了统一分析,这一分析既适用于Poisson方程式,也适用于具有对称应应应力配方的线性弹性问题。基于这一结果,一些本地的后处理方案被用来提高迁移的准确性,如果为迁移采用多级k(k+1,2)m(k+1,2),则采用多级k(k)k(k),为迁移使用多级k),并进行了一些数字实验,以验证理论结果。