In this paper we propose a novel class of methods for high order accurate integration of multirate systems of ordinary differential equation initial-value problems. The proposed methods construct multirate schemes by approximating the action of matrix $\varphi$-functions within explicit exponential Rosenbrock (ExpRB) methods, thereby called Multirate Exponential Rosenbrock (MERB) methods. They consist of the solution to a sequence of modified "fast" initial-value problems, that may themselves be approximated through subcycling any desired IVP solver. In addition to proving how to construct MERB methods from certain classes of ExpRB methods, we provide rigorous convergence analysis of these methods and derive efficient MERB schemes of orders two through six (the highest order ever constructed infinitesimal multirate methods). We then present numerical simulations to confirm these theoretical convergence rates, and to compare the efficiency of MERB methods against other recently-introduced high order multirate methods.
翻译:在本文中,我们提出了一套新颖的方法,用于对普通差分方程初始价值问题的多率系统进行高顺序精确整合。拟议方法在明确的指数罗森布罗克(Exprock)方法中,以接近矩阵 $\ varphipe$ 函数的行动,从而在明确指数式的罗森布罗克(Exprock)方法中,从而称为多率指数罗森布罗克(MERB)方法,从而构建了多种比率方案。这些方法包括一系列经过修改的“快”初始价值问题的解决办法,这些问题本身可以通过任何预期的IVP解决方案的子子子集成法来加以比较。除了证明如何从某些类别的ExpRB方法中构建MERB方法外,我们还对这些方法进行严格的趋同分析,并得出两至六级的高效的MERB规则(有史以来构建的无限多元多率方法的最高顺序 ) 。然后我们进行数字模拟,以证实这些理论趋同率,并将MERB方法的效率与其他最近产生的高排序多率方法进行比较。