Existing image enhancement methods fall short of expectations because with them it is difficult to improve global and local image contrast simultaneously. To address this problem, we propose a histogram equalization-based method that adapts to the data-dependent requirements of brightness enhancement and improves the visibility of details without losing the global contrast. This method incorporates the spatial information provided by image context in density estimation for discriminative histogram equalization. To minimize the adverse effect of non-uniform illumination, we propose defining spatial information on the basis of image reflectance estimated with edge preserving smoothing. Our method works particularly well for determining how the background brightness should be adaptively adjusted and for revealing useful image details hidden in the dark.
翻译:为了解决这个问题,我们建议采用直方平准法,以适应增强亮度的数据要求,提高细节的能见度,同时又不失去全球对比。这种方法将图像背景提供的空间信息纳入密度估计中,以便实现歧视性直方平准。为了尽可能减少非统一照明的不利影响,我们提议根据图像反射估计来界定空间信息,并保持光滑。我们的方法特别有助于确定背景亮度应如何适应性调整,并揭示隐藏在黑暗中的有用图像细节。