In this paper, we leverage the recent advances in physics-informed neural network (PINN) and develop a generic PINN-based framework to assess the reliability of multi-state systems (MSSs). The proposed methodology consists of two major steps. In the first step, we recast the reliability assessment of MSS as a machine learning problem using the framework of PINN. A feedforward neural network with two individual loss groups are constructed to encode the initial condition and state transitions governed by ordinary differential equations (ODEs) in MSS. Next, we tackle the problem of high imbalance in the magnitude of the back-propagated gradients in PINN from a multi-task learning perspective. Particularly, we treat each element in the loss function as an individual task, and adopt a gradient surgery approach named projecting conflicting gradients (PCGrad), where a task's gradient is projected onto the norm plane of any other task that has a conflicting gradient. The gradient projection operation significantly mitigates the detrimental effects caused by the gradient interference when training PINN, thus accelerating the convergence speed of PINN to high-precision solutions to MSS reliability assessment. With the proposed PINN-based framework, we investigate its applications for MSS reliability assessment in several different contexts in terms of time-independent or dependent state transitions and system scales varying from small to medium. The results demonstrate that the proposed PINN-based framework shows generic and remarkable performance in MSS reliability assessment, and the incorporation of PCGrad in PINN leads to substantial improvement in solution quality and convergence speed.
翻译:在本文中,我们利用物理学-知情神经网络(PINN)的最新进展,并开发了一个通用的PINN框架,以评估多任务学习的可靠性。拟议的方法包括两个主要步骤。第一步,我们利用PINN的框架,将MSS的可靠性评估改成机械学习问题。 建造了一个由两个损失组组成的向前神经网络,以编码由MSS中普通差异方程式(ODE)制约的初始状况和状态过渡。 其次,我们从多任务学习的角度,从多任务学习的角度,解决了PINN中后回错的梯度高度不平衡的问题。特别是,我们把损失函数中的每个要素都当作单项任务处理,并采用一个梯度化手术方法来预测相互矛盾的梯度(PCGrad)。 将任务梯度预测到任何其他任务的标准平梯度上。 梯度预测行动在培训PINN时,显著减轻了梯度干扰造成的有害影响,从而加快了PINN至高速度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度,从而加速速度,从而加快了PIN至高梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度