We consider the explanation problem of Graph Neural Networks (GNNs). Most existing GNN explanation methods identify the most important edges or nodes but fail to consider substructures, which are more important for graph data. The only method that considers subgraphs tries to search all possible subgraphs and identify the most significant subgraphs. However, the subgraphs identified may not be recurrent or statistically important. In this work, we propose a novel method, known as MotifExplainer, to explain GNNs by identifying important motifs, recurrent and statistically significant patterns in graphs. Our proposed motif-based methods can provide better human-understandable explanations than methods based on nodes, edges, and regular subgraphs. Given an input graph and a pre-trained GNN model, our method first extracts motifs in the graph using well-designed motif extraction rules. Then we generate motif embedding by feeding motifs into the pre-trained GNN. Finally, we employ an attention-based method to identify the most influential motifs as explanations for the final prediction results. The empirical studies on both synthetic and real-world datasets demonstrate the effectiveness of our method.


翻译:我们考虑的是图形神经网络(GNN)的解释问题。大多数现有的GNN解释方法都确定了最重要的边缘或节点,但却没有考虑子结构,这对于图形数据来说更为重要。唯一一种方法是考虑子组织试图搜索所有可能的子集和确定最重要的子集。然而,所查明的子集可能不是经常性的或统计上重要的。在这项工作中,我们提出了一个称为MotifExplainer的新颖方法,通过在图表中找出重要的点、经常性和具有统计意义的模式来解释GNN。我们提议的基于模型的方法比基于节点、边缘和常规子集的方法可以提供更好的人类无法理解的解释。考虑到输入图和预先训练过的GNNN模型,我们的方法首先在图表中提取motifs,使用精心设计的 motif 提取规则。然后我们通过将motifs嵌入预先训练过的GNNNM,我们用基于注意力的方法来确定最有影响力的模型,作为我们最终预测结果的解释。实验性研究既展示了我们真实世界数据的方法。

1
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员