We consider a rank regression setting, in which a dataset of $N$ samples with features in $\mathbb{R}^d$ is ranked by an oracle via $M$ pairwise comparisons. Specifically, there exists a latent total ordering of the samples; when presented with a pair of samples, a noisy oracle identifies the one ranked higher with respect to the underlying total ordering. A learner observes a dataset of such comparisons and wishes to regress sample ranks from their features. We show that to learn the model parameters with $\epsilon > 0$ accuracy, it suffices to conduct $M \in \Omega(dN\log^3 N/\epsilon^2)$ comparisons uniformly at random when $N$ is $\Omega(d/\epsilon^2)$.
翻译:我们考虑一个级次回归设置,在这个设置中,以美元为特质的美元样本的数据集通过美元对等比较按甲骨文排序。具体地说,存在一个潜在的样本总顺序;当用一对样本展示时,一个吵闹的甲骨文在总订单中识别的排名较高者。学习者观察了这种比较的数据集,并希望从样本的特征中退缩。我们显示,用美元 > 0美元的精确度来学习模型参数,就足以在美元为美元时,随机进行1美元(dN\log3N/\epsilon2美元)的典型比较。