We consider the problem of learning the true ordering of a set of alternatives from largely incomplete and noisy rankings. We introduce a natural generalization of both the classical Mallows model of ranking distributions and the extensively studied model of noisy pairwise comparisons. Our selective Mallows model outputs a noisy ranking on any given subset of alternatives, based on an underlying Mallows distribution. Assuming a sequence of subsets where each pair of alternatives appears frequently enough, we obtain strong asymptotically tight upper and lower bounds on the sample complexity of learning the underlying complete ranking and the (identities and the) ranking of the top-k alternatives from selective Mallows rankings. Moreover, building on the work of (Braverman and Mossel, 2009), we show how to efficiently compute the maximum likelihood complete ranking from selective Mallows rankings.
翻译:我们考虑从基本上不完整和吵闹的排名中了解一套替代物的真正排序问题。我们引入了古典马洛斯排名分布模式和广泛研究的杂音对比模式的自然概括。我们选择性马洛斯模式在马洛斯分布的基础上,在任何特定子集的替代物中产生一个吵闹的排名。假设一系列子集,每组替代品都经常出现,我们获得的样本复杂性是,从学习马洛斯选择性排名中最高级替代物的完整排名和(身份和)排名中,我们获得了同样严格的高度紧凑和较低的分界线。此外,我们借助(布拉夫曼和莫塞尔,2009年)的工作,展示了如何高效地从选择性马洛斯排名中计算最大可能性的完整排名。