We propose a novel Graph Self-Attention module to enable Transformer models to learn graph representation. We aim to incorporate graph information, on the attention map and hidden representations of Transformer. To this end, we propose context-aware attention which considers the interactions between query, key and graph information. Moreover, we propose graph-embedded value to encode the graph information on the hidden representation. Our extensive experiments and ablation studies validate that our method successfully encodes graph representation on Transformer architecture. Finally, our method achieves state-of-the-art performance on multiple benchmarks of graph representation learning, such as graph classification on images and molecules to graph regression on quantum chemistry.
翻译:我们提出一个新的图表自我注意模块, 使变形模型能够学习图形表达式。 我们的目标是在变形器的注意地图和隐藏的表示式上纳入图形信息。 为此, 我们提出背景意识关注, 考虑查询、 关键和图形信息之间的相互作用。 此外, 我们提出图形组合值, 以编码隐藏表达式的图形信息。 我们的广泛实验和模拟研究证实我们的方法成功地编码了变形器结构的图形表达式。 最后, 我们的方法在图形表达式学习的多个基准上取得了最先进的性能, 比如图像和分子的图形分类, 以图解化学的回归。