This paper provides a compact method to lift the free exponential construction of Mellies-Tabareau-Tasson over the Hyland-Schalk double glueing for orthogonality categories. A condition "reciprocity of orthogonality" is presented simply enough to lift the free exponential over the double glueing in terms of the orthogonality. Our general method applies to the monoidal category TsK of the s-finite transition kernels with countable biproducts. We show (i) TsK^{op} has the free exponential, which is shown to be describable in terms of measure theory. (ii) The s-finite transition kernels have an orthogonality between measures and measurable functions in terms of Lebesgue integrals. The orthogonality is reciprocal, hence the free exponential of (i) lifts to the orthogonality category O_I(TsK^{op}), which subsumes Ehrhard et al's probabilistic coherent spaces as the full subcategory of countable measurable spaces. To lift the free exponential, the measure-theoretic uniform convergence theorem commuting Lebesgue integral and limit plays a crucial role. Our measure-theoretic orthogonality is considered as a continuous version of the orthogonality of the probabilistic coherent spaces for linear logic, and in particular provides a two layered decomposition of Crubille et al's direct free exponential for these spaces.


翻译:本文为提升Mellies- Tabareau- Tasson 在 Hyland- Schal 双粘合性类别上的自由指数构建提供了一种紧凑的方法。 一个条件“ 垂直对齐性 ”, 只需用正向性来提升双粘合性上的自由指数性。 我们的一般方法适用于具有可计算双产物的丝质过渡核心的单向类 TsK 。 我们显示 (一) TsK ⁇ op} 拥有自由指数性, 从测量理论的角度来看, 这被证明是可消除的 。 (二) S- flite 过渡核心在测量和可测量空间的完整亚类中, 测量度和可测量的可测量性之间, 测量的度和可测量性之间, 度之间的测量和可测量性, 等值之间, 等值之间的度值之间, 等值之间的度和可测量性, 等值之间, 等值之间, 等值之间, 等值之间, 等值之间, 等值之间, 等值之间的直线性 。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
【Nature-MI】可解释人工智能的药物发现
专知会员服务
45+阅读 · 2020年11月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
4+阅读 · 2020年1月17日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员