Partially defined cooperative games are a generalisation of classical cooperative games in which payoffs for some of the coalitions are not known. In this paper we perform a systematic study of partially defined games, focusing on two important classes of cooperative games: convex games and positive games. In the first part, we focus on convexity and give a polynomially decidable condition for extendability and a full description of the set of symmetric convex extensions. The extreme games of this set, together with the lower game and the upper game, are also described. In the second part, we study positivity. We characterise the non-extendability to a positive game by existence of a certificate and provide a characterisation for the extreme games of the set of positive extensions. We use both characterisations to describe the positive extensions of several classes of incomplete games with special structures. Our results complement and extend the existing theory of partially defined cooperative games. We provide context to the problem of completing partial functions and, finally, we outline an entirely new perspective on a connection between partially defined cooperative games and cooperative interval games.
翻译:部分定义的合作游戏是典型合作游戏的概观,其中一些联盟的回报不为人知。在本文中,我们系统地研究部分定义的游戏,重点是两个重要的合作游戏类别:convex游戏和正面游戏。在第一部分,我们侧重于共性,并给出一个可扩展性的多元分解条件,并完整描述一套对称共性扩展的理论。这个组的极端游戏,连同较低的游戏和上层游戏,也作了描述。在第二部分,我们研究正性。我们通过存在证书来描述非可扩展的正性游戏,并为一套正性扩展的极端游戏提供特征特征。我们用两种特征来描述若干类不完全的游戏中带有特殊结构的正扩展。我们的结果补充并扩展了部分定义的合作游戏的现有理论。我们为部分定义的合作游戏完成部分功能的问题提供了背景,最后,我们从全新的角度概述了部分定义的合作游戏与合作间隔游戏之间的联系。