In this paper, we present a new ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Eulerian penalization of error in the Euclidean space, the Wasserstein metric can capture translation and difference between the shapes of square-integrable probability distributions of the background state and observations -- enabling to formally penalize geophysical biases in a state-space with non-Gaussian distribution. The new approach is applied to dissipative and chaotic evolutionary dynamics and its advantages over classic variational and filtering techniques are documented under systematic and random errors.
翻译:在本文中,我们展示了一套新的全套数据同化范式,即对配有瓦塞斯坦指标的里伊曼多元体的混合数据同化范式。与欧几里德空间对错误的厄利安惩罚不同,瓦西尔斯坦标准可以捕捉背景状态和观察的平方概率分布形状之间的翻译和差异,从而能够在非加西文分布的状态空间正式惩罚地球物理偏向。新办法用于消散和混乱的进化动态,其优于典型变异和过滤技术的优势在有系统和随机的错误下记录。