Stochastic generative models enable us to capture the geometric structure of a data manifold lying in a high dimensional space through a Riemannian metric in the latent space. However, its practical use is rather limited mainly due to inevitable complexity. In this work we propose a surrogate conformal Riemannian metric in the latent space of a generative model that is simple, efficient and robust. This metric is based on a learnable prior that we propose to learn using a basic energy-based model. We theoretically analyze the behavior of the proposed metric and show that it is sensible to use in practice. We demonstrate experimentally the efficiency and robustness, as well as the behavior of the new approximate metric. Also, we show the applicability of the proposed methodology for data analysis in the life sciences.
翻译:斯托克基因化模型使我们能够通过潜质空间的里曼尼度量来捕捉高维空间数据元体的几何结构。 但是,它的实际使用相当有限, 主要是因为不可避免复杂。 在这项工作中, 我们提议在简单、 高效和可靠的基因化模型的潜伏空间中采用代孕符合的里曼尼度量值。 这个尺度是基于我们提议使用基本的能源模型学习之前可以学习的。 我们从理论上分析拟议指标的行为, 并表明在实践中使用该指标是明智的。 我们实验性地展示了效率和稳健性, 以及新的近似度指标的行为。 我们还展示了拟议的生命科学数据分析方法的适用性。