The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known and physically relevant measures are the Hilbert-Schmidt ensemble and the Bures-Hall ensemble. In this work, we propose a generalized ensemble of density matrices, termed quantum interpolating ensemble, which is able to interpolate between these two seemingly unrelated ensembles. As a first step to understand the proposed ensemble, we derive the exact mean formulas of entanglement entropies over such an ensemble generalizing several recent results in the literature. We also derive some key properties of the corresponding orthogonal polynomials relevant to obtaining other statistical information of the entropies. Numerical results demonstrate the usefulness of the proposed ensemble in estimating the degree of entanglement of quantum states.
翻译:密度矩阵形式主义是研究量子信息处理中的各种问题的基本工具。 在密度矩阵空间中,最著名和实际相关的措施是Hilbert-Schmidt 共和和和Bures-Hall 共和。在这项工作中,我们提出了一个通用的密度矩阵组合,称为量子内插共和体,能够对这两个似乎无关的共和体进行内插。作为理解拟议共和体的第一步,我们从中得出关于这种共通性文献中最近若干结果的纠缠混合的精确平均公式。我们还得出了对应或横向多边多种族学的一些关键属性,以获取其他的多民族学统计信息。数字结果表明,拟议的共和体在估计量子状态的纠缠程度方面非常有用。