The distance and divergence of the probability measures play a central role in statistics, machine learning, and many other related fields. The Wasserstein distance has received much attention in recent years because of its distinctions from other distances or divergences. Although~computing the Wasserstein distance is costly, entropy-regularized optimal transport was proposed to computationally efficiently approximate the Wasserstein distance. The purpose of this study is to understand the theoretical aspect of entropy-regularized optimal transport. In this paper, we~focus on entropy-regularized optimal transport on multivariate normal distributions and $q$-normal distributions. We~obtain the explicit form of the entropy-regularized optimal transport cost on multivariate normal and $q$-normal distributions; this provides a perspective to understand the effect of entropy regularization, which was previously known only experimentally. Furthermore, we obtain the entropy-regularized Kantorovich estimator for the probability measure that satisfies certain conditions. We also demonstrate how the Wasserstein distance, optimal coupling, geometric structure, and statistical efficiency are affected by entropy regularization in some experiments. In particular, our results about the explicit form of the optimal coupling of the Tsallis entropy-regularized optimal transport on multivariate $q$-normal distributions and the entropy-regularized Kantorovich estimator are novel and will become the first step towards the understanding of a more general setting.
翻译:概率度量的距离和差异在统计、机器学习和许多其他相关领域都起着核心作用。 瓦塞斯特因距离与其他距离或差异的区别,近年来瓦塞斯坦距离受到极大关注。 虽然计算瓦塞斯特距离的成本昂贵, 提议采用正正正统的最佳运输方式, 以计算有效接近瓦塞斯坦距离。 本研究的目的是了解加密正规化最佳运输的理论方面。 在本文中,我们注重在多变正常分布和美元正常分布上的正正统定期最佳运输方式。 我们在多变正常分配和美元正常分配中保持了明确的正统最佳运输费用的形式; 这为理解加密正规化的效果提供了一种视角,而以前只是实验性地知道这一点。 此外,我们获得了对堪托洛维奇正规化最佳运输方式的理论性估算,以达到某些条件的概率衡量标准。 我们还展示了瓦塞斯特斯坦距离、最佳政变、几何测量结构以及统计效率如何通过某种正统的正统变正统变正的货币分配方式,在某种最正统的变正正统变正的变正的变正的货币形式上,会影响到了我们最正正正正正正正正正正正正正正的变的变的变的货币形式。