One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.
翻译:在所有这些情况下,抽样输入都来自以几何结构为特征的矩阵组,从而形成所谓的矩阵元体,这项工作将作为即将出版的《减少命令范本手册》(P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, 将在DE GRUYTER上出现)的一章,并审查在减少模型方面出现的最重要的矩阵元体的数值处理情况;此外,还概述了数据相互交换和泰勒对矩阵元体的类似外推法的主要方法,并辅之以伪编码中的算法。