Probabilistic sensitivity analysis identifies the influential uncertain input to guide decision-making. We propose a general sensitivity framework with respect to the input distribution parameters that unifies a wide range of sensitivity measures, including information theoretical metrics such as the Fisher information. The framework is derived analytically via a constrained maximization and the sensitivity analysis is reformulated into an eigenvalue problem. There are only two main steps to implement the sensitivity framework utilising the likelihood ratio/score function method, a Monte Carlo type sampling followed by solving an eigenvalue equation. The resulting eigenvectors then provide the directions for simultaneous variations of the input parameters and guide the focus to perturb uncertainty the most. Not only is it conceptually simple, but numerical examples demonstrate that the proposed framework also provides new sensitivity insights, such as the combined sensitivity of multiple correlated uncertainty metrics, robust sensitivity analysis with an entropic constraint, and approximation of deterministic sensitivities. Three different examples, ranging from a simple cantilever beam to an offshore marine riser, are used to demonstrate the potential applications of the proposed sensitivity framework to applied mechanics problems.
翻译:概率敏感度分析确定了用于指导决策的具有影响力的不确定投入。我们提出了一个关于输入分布参数的一般性敏感度框架,该参数统一了广泛的敏感度措施,包括渔业信息等信息理论度量。框架通过限制最大化分析得出,敏感度分析重新拟订为半值问题。只有两个主要步骤来实施敏感度框架,即利用可能性比率/核心功能方法,蒙特卡洛抽样,然后解决一个电子价值方程式。由此产生的源生体为输入参数的同步变化提供指导,并指导对不确定性进行最集中的注意。不仅在概念上很简单,而且数字实例表明,拟议框架还提供了新的敏感度洞察力,例如多重相关不确定性度指标的综合敏感性,带有昆虫制约的稳健敏感度分析,以及确定性敏感性的近似。从简单的罐头到近海海洋升温者,有三种不同的例子用来显示拟议敏感度框架对应用机械问题的潜在应用。