In this paper we use the method of discrete Darboux polynomials to calculate preserved measures and integrals of rational maps. The approach is based on the use of cofactors and Darboux polynomials and relies on the use of symbolic algebra tools. Given sufficient computing power, most, if not all, rational preserved integrals can be found (and even some non-rational ones). We show, in a number of examples, how it is possible to use this method to both determine and detect preserved measures and integrals of the considered rational maps. Many of the examples arise from the Kahan-Hirota-Kimura discretization of completely integrable systems of ordinary differential equations.
翻译:在本文中,我们使用离散的Darbuux多元分子计算保存的措施和合理地图的集成物的方法,这种方法以使用同源物和Darbuux多元分子为基础,并依靠使用象征性代数工具。考虑到充分的计算能力,可以找到大部分(如果不是全部的话)合理保存的集成物(甚至一些非理性的)。我们在若干例子中展示了如何利用这种方法确定和探测被保存的措施和考虑的合理地图的集成物。许多例子来自完全不可分离的普通微分方程系统卡汉-希罗塔-基村的离散。