We present a general framework for the characterization of the packet error probability achievable in cell-free Massive multiple-input multiple output (MIMO) architectures deployed to support ultra-reliable low lantecy (URLLC) traffic. The framework is general and encompasses both centralized and distributed cell-free architectures, arbitrary fading channels and channel estimation algorithms at both network and user-equipment (UE) sides, as well as arbitrary combing and precoding schemes. The framework is used to perform numerical experiments that clearly show the superiority of cell-free architectures compared to cellular architectures in supporting URLLC traffic in uplink and downlink. Also, they provide the following novel insights into the optimal design of cell-free architectures for URLLC: i) minimum mean square error (MMSE) spatial processing must be used to achieve the URLLC targets; ii) for a given total number of antennas per coverage area, centralized cell-free solutions involving single-antenna access points (APs) offer the best performance in the uplink, thereby highlighting the importance of reducing the average distance between APs and UEs in the URLLC regime; iii) this observation applies also to the downlink, provided that the APs transmit precoded pilots to allow the UEs to estimate accurately the precoded channel.
翻译:我们提出了一个总体框架,用于确定在为支持超可靠低自通度(URLLC)交通而部署的无细胞大规模多投入多输出(MIMO)结构中可实现的包错误概率。框架是一般性的,包括中央和分布的无细胞结构、网络和用户设备(UE)两侧的任意淡化渠道和频道估计算法,以及任意的梳理和预编码计划。框架用于进行数字实验,明确显示无细胞结构相对于细胞结构在支持上链接和下链接中支持无细胞LULC交通方面优于手机结构的优势。此外,框架还就无细胞结构的最佳设计提供了以下新的见解:一) 最小平均平方差(MMSE) 空间处理必须用来实现URLC目标;二) 对于每个覆盖区的特定总天线,涉及单干纳接入点的中央无细胞解决方案为上链接提供最佳性能,从而突出降低APs与UELC通信中UE平均距离的重要性;三) 将ALLC系统前的标码用于URLC系统,并准确地将这一标前的标为ALD。