Classical two-sample permutation tests for equality of distributions have exact size in finite samples, but they fail to control size for testing equality of parameters that summarize each distribution. This paper proposes permutation tests for equality of parameters that are estimated at root-$n$ or slower rates. Our general framework applies to both parametric and nonparametric models, with two samples or one sample split into two subsamples. Our tests have correct size asymptotically while preserving exact size in finite samples when distributions are equal. They have no loss in local asymptotic power compared to tests that use asymptotic critical values. We propose confidence sets with correct coverage in large samples that also have exact coverage in finite samples if distributions are equal up to a transformation. We apply our theory to four commonly-used hypothesis tests of nonparametric functions evaluated at a point. Lastly, simulations show good finite sample properties, and two empirical examples illustrate our tests in practice.
翻译:用于分布平等的经典双模模异测试在限定样本中具有精确的大小, 但是它们无法控制大小来测试对每个分布进行总结的参数的平等性。 本文建议对以root- $n$或更慢的速率估算的参数的平等性进行变异性测试。 我们的一般框架适用于参数模型和非参数模型, 将两个样本或一个样本分为两个子样本。 我们的测试具有正确的大小, 同时在分布相同的情况下保留有限样本中的确切大小。 与使用非症状关键值的测试相比, 本地的消毒力没有损失。 我们建议对大型样本建立正确的信任度, 如果分布等于一个变异, 也会精确覆盖在有限样本中。 我们的理论适用于在一个点上评估的非参数的四种常用假设性测试。 最后, 模拟显示了良好的有限样本特性, 以及两个实验实例说明我们在实践中的测试。