We present a novel approach for high-order accurate numerical differentiation on unstructured meshes of quadrilateral elements. To differentiate a given function, an auxiliary function with greater smoothness properties is defined which when differentiated provides the derivatives of the original function. The method generalises traditional finite difference methods to meshes of arbitrary topology in any number of dimensions for any order of derivative and accuracy. We demonstrate the accuracy of the numerical scheme using dual quadrilateral meshes and a refinement method based on subdivision surfaces. The scheme is applied to the solution of a range of partial differential equations, including both linear and nonlinear, second and fourth order equations, and a time-dependent first order equation.
翻译:我们提出了一个新颖的方法,用于对四边形元素的无结构的网格进行高层次准确的数值区分。为了区分某一功能,界定了具有更顺畅特性的辅助功能,这种功能在区别时提供原始函数的衍生物。该方法概括了任意地表层层层层层层中任意性地层层层层层层层层层层层层中任何一系列衍生物和准确性层层层层层中传统的有限差别方法。我们用双四边色和基于子形表面的精细方法来显示数字方法的准确性。这个方法用于解决一系列部分差别方程,包括线性和非线性等、第二和第三级等式,以及一个取决于时间的一级等式。