We introduce an original way to estimate the memory parameter of the elephant random walk, a fascinating discrete time random walk on integers having a complete memory of its entire history. Our estimator is nothing more than a quasi-maximum likelihood estimator, based on a second order Taylor approximation of the log-likelihood function. We show the almost sure convergence of our estimate in the diffusive, critical and superdiffusive regimes. The local asymptotic normality of our statistical procedure is established in the diffusive regime, while the local asymptotic mixed normality is proven in the superdiffusive regime. Asymptotic and exact confidence intervals as well as statistical tests are also provided. All our analysis relies on asymptotic results for martingales and the quadratic variations associated.
翻译:我们引入了一种原始的方法来估计大象随机行走的记忆参数, 这是一种令人着迷的离散时间随机行走在具有完整历史记忆的整数上。 我们的测算器只不过是一个准最大可能性测算器, 其依据是日志相似功能的第二顺序 Taylor 近似 。 我们展示了我们估算值在 diffusive、 关键和超强的系统中几乎可以肯定的趋同性。 我们的统计程序在当地的无症状常态是在 diffusive 系统中建立的, 而本地的无症状混合正常性在超强的系统里得到了证明。 同时, 也提供了一个准最大概率的测算器和精确的置信间隔以及统计测试。 我们的所有分析都依赖于 martingales 的无症状结果以及相关的二次变量变化 。