We propose a network architecture capable of reliably estimating uncertainty of regression based predictions without sacrificing accuracy. The current state-of-the-art uncertainty algorithms either fall short of achieving prediction accuracy comparable to the mean square error optimization or underestimate the variance of network predictions. We propose a decoupled network architecture that is capable of accomplishing both at the same time. We achieve this by breaking down the learning of prediction and prediction interval (PI) estimations into a two-stage training process. We use a custom loss function for learning a PI range around optimized mean estimation with a desired coverage of a proportion of the target labels within the PI range. We compare the proposed method with current state-of-the-art uncertainty quantification algorithms on synthetic datasets and UCI benchmarks, reducing the error in the predictions by 23 to 34% while maintaining 95% Prediction Interval Coverage Probability (PICP) for 7 out of 9 UCI benchmark datasets. We also examine the quality of our predictive uncertainty by evaluating on Active Learning and demonstrating 17 to 36% error reduction on UCI benchmarks.
翻译:我们提出一个网络架构,以便能够可靠地估计基于回归的预测的不确定性,而不牺牲准确性。目前最先进的不确定性算法要么没有达到与平均平方误优化率相当的预测准确性,要么低估网络预测的差异。我们提出一个能够同时完成两者的分解网络架构。我们通过将预测和预测间隔估计的学习分成两个阶段的培训过程来实现这一点。我们使用一个定制损失函数来学习一个PI范围围绕最佳平均估计值的测算,并期望覆盖PI范围内目标标签的一部分。我们比较了拟议方法,将合成数据集和UCI基准的现有最新不确定性量化算法和UCI基准进行比较,将预测中的误差减少23至34 %,同时将9个UCI基准数据集中的7个基准数据集的预测性跨度概率(PICP)维持95%。我们还通过评价积极学习和显示UCI基准减少17至36%的误差来检查我们的预测性不确定性的质量。