The present paper aims at applying uncertainty quantification methodologies to process simulations of powder bed fusion of metal. In particular, for a part-scale thermomechanical model of an Inconel 625 super-alloy beam, we study the uncertainties of three process parameters, namely the activation temperature, the powder convection coefficient and the gas convection coefficient. First, we perform a variance-based global sensitivity analysis to study how each uncertain parameter contributes to the variability of the beam displacements. The results allow us to conclude that the gas convection coefficient has little impact and can therefore be fixed to a constant value for subsequent studies. Then, we conduct an inverse uncertainty quantification analysis, based on a Bayesian approach on synthetic displacements data, to quantify the uncertainties of the two remaining parameters, namely the activation temperature and the powder convection coefficient. Finally, we use the results of the inverse uncertainty quantification analysis to perform a data-informed forward uncertainty quantification analysis of the residual strains. Crucially, we make use of surrogate models based on sparse grids to keep to a minimum the computational burden of every step of the uncertainty quantification analysis. The proposed uncertainty quantification workflow allows us to substantially ease the typical trial-and-error approach used to calibrate power bed fusion part-scale models, and to greatly reduce uncertainties on the numerical prediction of the residual strains. In particular, we demonstrate the possibility of using displacement measurements to obtain a data-informed probability density function of the residual strains, a quantity much more complex to measure than displacements.
翻译:本文旨在将不确定性量化方法应用于金属粉床熔融过程的过程模拟。特别地,针对Inconel 625高强度合金梁的零件尺度热力学力学模型,我们研究了三个过程参数的不确定性,即激活温度、粉末对流系数和气体对流系数。首先,我们进行基于方差的全局敏感度分析,研究每个不确定参数对梁位移变异性的贡献。结果表明,气体对流系数对位移变异性的影响很小,因此可以固定一个常数值进行后续研究。然后,我们基于贝叶斯方法在合成位移数据上进行反向不确定性量化分析,以量化激活温度和粉末对流系数的不确定性。最后,我们利用反向不确定性量化分析的结果,基于数据推断进行残余应变的前向不确定性量化分析。关键是,我们采用基于稀疏网格的代理模型,以最小化不确定性量化分析的每个步骤的计算负担。所提出的不确定性量化工作流程可大大简化校准粉床熔融零件尺度模型所采用的典型试错方法,并大大减少对残余应变的数值预测的不确定性。特别地,我们证明了使用位移测量可以获得残余应变的数据推断概率密度函数,这是一个比位移复杂得多的数量。