Recent advances in depth sensing technologies allow fast electronic maneuvering of the laser beam, as opposed to fixed mechanical rotations. This will enable future sensors, in principle, to vary in real-time the sampling pattern. We examine here the abstract problem of whether adapting the sampling pattern for a given frame can reduce the reconstruction error or allow a sparser pattern. We propose a constructive generic method to guide adaptive depth sampling algorithms. Given a sampling budget B, a depth predictor P and a desired quality measure M, we propose an Importance Map that highlights important sampling locations. This map is defined for a given frame as the per-pixel expected value of M produced by the predictor P, given a pattern of B random samples. This map can be well estimated in a training phase. We show that a neural network can learn to produce a highly faithful Importance Map, given an RGB image. We then suggest an algorithm to produce a sampling pattern for the scene, which is denser in regions that are harder to reconstruct. The sampling strategy of our modular framework can be adjusted according to hardware limitations, type of depth predictor, and any custom reconstruction error measure that should be minimized. We validate through simulations that our approach outperforms grid and random sampling patterns as well as recent state-of-the-art adaptive algorithms.
翻译:与固定机械旋转相比,最近深度遥感技术的进步使得激光束的快速电子操控,相对于固定的机械旋转。 这将使未来传感器原则上能够实时地改变取样模式。 我们在这里研究为某一框架调整取样模式是否能够减少重建错误或允许稀疏模式的抽象问题。 我们提出了一个指导适应深度取样算法的建设性通用方法。 根据取样预算B、深度预测器P和预期的质量措施M, 我们建议了一个强调重要取样地点的重要性地图。 这张地图是针对预测器P所制作的M每像素预期值的特定框架定义的, 具有B随机样本的格局。 这个地图可以在培训阶段很好地估计。 我们显示一个神经网络能够学会产生高度忠实的“重要性”地图, 具有RGB图像。 我们然后提出一种为现场制作取样模式的算法, 在较难重建的地区, 现场的取样模式比较密集。 我们模块框架的取样战略可以根据硬件限制、 深度预测器类型和任何定制的重建错误测量标准加以调整, 并在最近阶段进行精确的测算法中进行。 我们通过模拟和随机测算法, 来校验我们的模型, 。