A decision maker's utility depends on her action $a\in A \subset \mathbb{R}^d$ and the payoff relevant state of the world $\theta\in \Theta$. One can define the value of acquiring new information as the difference between the maximum expected utility pre- and post information acquisition. In this paper, I find asymptotic results on the expected value of information as $d \to \infty$, by using tools from the theory of (sub)-Guassian processes and generic chaining.
翻译:决策人的效用取决于她的行动 $a\ in A\ subset \ mathbb{R ⁇ d$ 和世界相关状态的回报$\theta\ in\ Theta$。 人们可以将获取新信息的价值定义为最大预期效用前和后信息获取的差别。 在本文中,我发现,通过使用(sub)-Guassian过程理论的工具和通用链锁链,信息预期值为$d\ to\ inty$, 结果是微不足道的。