Tensor network methods have been a key ingredient of advances in condensed matter physics and have recently sparked interest in the machine learning community for their ability to compactly represent very high-dimensional objects. Tensor network methods can for example be used to efficiently learn linear models in exponentially large feature spaces [Stoudenmire and Schwab, 2016]. In this work, we derive upper and lower bounds on the VC dimension and pseudo-dimension of a large class of tensor network models for classification, regression and completion. Our upper bounds hold for linear models parameterized by arbitrary tensor network structures, and we derive lower bounds for common tensor decomposition models~(CP, Tensor Train, Tensor Ring and Tucker) showing the tightness of our general upper bound. These results are used to derive a generalization bound which can be applied to classification with low rank matrices as well as linear classifiers based on any of the commonly used tensor decomposition models. As a corollary of our results, we obtain a bound on the VC dimension of the matrix product state classifier introduced in [Stoudenmire and Schwab, 2016] as a function of the so-called bond dimension~(i.e. tensor train rank), which answers an open problem listed by Cirac, Garre-Rubio and P\'erez-Garc\'ia in [Cirac et al., 2019].
翻译:Tensor 网络方法一直是浓缩物质物理进步的一个关键要素,最近引起了对机器学习界的兴趣,因为机器学习界有能力压缩代表非常高维天体。例如,Tensor 网络方法可用于在指数型大型地貌空间[Stuudenmire和Schwab,2016]中高效学习线性模型。在这项工作中,我们从VC层面和大量高压网络模型的伪分解中得出上下界,以进行分类、回归和完成。我们的结果的必然结果是,我们持有由任意的高压网络结构参数所测量的线性模型,我们获得了显示我们共同的高压分解模型-(CP、Tensor 火车、 Tensor Ring 和 Tucker) 的下界,以显示我们总体上界的紧凑性。这些结果被用来得出一个总体界限,可以适用于低级矩阵的分类以及基于常用的高压分解分解模型的线性分类。作为我们的结果的必然结果,我们得到了在[Stoudenmireal-Squal] 中引入的矩阵产品分解器的VC层面,而成为了[Stomireal-rmaireal-c] 的Sqlistrual- 的Squal 的Slic 的Scilex-liblex-c 的Slibro- 的S- 和S-liblexyal 的S-c 的Sliblex, 的Slibro-c 的Slibro-c 。